
Internals of Nut/TLS

Daniel Otte
(daniel.otte@rub.de)

September 2012

Abstract

This document will introduce you to the inner workings of Nut/TLS,
the TLS 1.2 server implementation for the Nut/OS embedded operat-
ing system.

Contents

1 About 3

2 Overview 3
2.1 Features . 3
2.2 A few words about TLS . 3
2.3 Basic operation of Nut/TLS 4

2.3.1 Driver Initialization 4
2.3.2 Opening A Nut/TLS stream 5
2.3.3 Assigning A Stream To A Nut/TLS stream 5
2.3.4 Handshake . 5
2.3.5 Send And Receive Data 5
2.3.6 Destruction Of A Nut/TLS stream 6

2.4 Drivers Point-Of-View . 6
2.4.1 Reading Data . 6
2.4.2 Sending Data . 6

2.5 Applications Point-Of-View 6
2.6 How The Parts Fit Together 7
2.7 Implementation content . 7

2.7.1 Header Files . 7
2.7.2 Implementation Files 8

1

3 Basic Data-structures 8
3.1 tls connection t . 9

3.1.1 name . 9
3.1.2 next . 9
3.1.3 connection . 9
3.1.4 write buffer . 9
3.1.5 write buffer size . 9
3.1.6 write buffer fill . 10
3.1.7 read buffer . 10
3.1.8 write buffer protocol 10
3.1.9 closing . 10
3.1.10 write lock . 10

3.2 tls record connection t . 10
3.2.1 base stream . 11
3.2.2 session id . 11
3.2.3 version . 11
3.2.4 secure . 11
3.2.5 post clienthello . 11
3.2.6 tx pre pattern . 11
3.2.7 rx pre pattern . 12
3.2.8 sec parameters . 12
3.2.9 sec states local . 12
3.2.10 sec states remote . 12
3.2.11 pending . 12
3.2.12 pending status . 12
3.2.13 error state . 12

4 Buffering 12
4.1 Write Buffer . 13

4.1.1 Allocation . 13
4.2 Read Buffer . 13

5 Packet Reception 13

6 Packet Transmission 15

7 The Handshake Process 15

8 Alert Handling 16

2

1 About

This section will tell you a little bit about the background of Nut/TLS and
its development.

*** will be written later ***

2 Overview

2.1 Features

Supported Cipher-Suites:

• TLS RSA WITH AES 128 CBC SHA256 (0x00,0x3C)

• TLS RSA WITH AES 128 CBC SHA (0x00,0x2F)

• TLS RSA WITH AES 256 CBC SHA256 (0x00,0x3D)

• TLS RSA WITH AES 256 CBC SHA (0x00,0x35)

• TLS RSA WITH 3DES EDE CBC SHA (0x00,0x0A)

• TLS RSA WITH RC4 128 SHA (0x00,0x05)

• TLS RSA WITH RC4 128 MD5 (0x00,0x04)

• TLS RSA WITH NULL SHA256 (0x00,0x3B)

• TLS RSA WITH NULL SHA (0x00,0x02)

• TLS RSA WITH NULL MD5 (0x00,0x01)

2.2 A few words about TLS

TLS means Transport-Layer-Security and is available in several versions,
which are all available as RFCs. We are here concerned only with version
1.2 which is specified in RFC-5246. TLS is also the successor of SSL, as the
new name did not propagate very well most people still say ”SSL” when
they mean TLS.

TLS forms a tunnel for sensitive data over insecure channels. It neither
defines what data is transported nor over which channel the secure channel
is established. A common combination is transferring HTTP-protocol data
via TLS over a TCP-connection. This is widely known as HTTPS.

3

TLS is basically a record protocol operating over a reliable stream (like a
TCP-connection), with two specified additional protocols operating on top
of it. A third protocol would be the application stream which also has a
specified protocol id.

Each record transmitted over a TLS connection may be encrypted and/or
signed by the transmitting party.

The two important protocols which are part of TLS and are operat-
ing over the record connection are the handshake-protocol and the alert-
protocol.

The handshake-protocol allows establishing a secure connection using
asymmetric cryptography while the alert-protocol handles error- and warning-
messages which are also used to gracefully close the connection.

It is important to know that the standard explicitly forbids application-
layer communication before the first successful handshake is done.

2.3 Basic operation of Nut/TLS

Nut/OS offers you to use TCP connections like normal streams in C. Nut/TLS
extends this ides to use TLS connections also like normal streams. It even
allows you to operate your connection over any bidirectional stream (not
only TCP connections but also serial/uart lines).

Nut/TLSs core is implemented as Nut/OS driver. It offers the standard
interface of Nut/OS drivers but also special functions which are necessary
for it to work.

The usage schema is quite simple:

1. initialization of the driver

2. opening an Nut/TLS stream

3. assigning a stream to the Nut/TLS stream

4. doing a handshake

5. send and receive data

6. close the Nut/TLS stream

2.3.1 Driver Initialization

The initialization of the driver is started by the following code:

NutRegisterDevice(&devTLS, 0, 0);

4

This causes the creation of a dedicated thread which flushes the write buffers
in fixed intervals and the allocation of memory for the resumption table.

2.3.2 Opening A Nut/TLS stream

A Nut/TLS stream is opened like a regular file with fopen(). The name
must start with "tls:" to indicate that the Nut/TLS driver should be used
to open this file. The "tls:"-prefix is followed by an identifier which is
unique for each distinct TLS-connection running at the same time. The
identifier may consist of any combination of the letters "A" to "Z", "a" to
"z", the numerical characters "0" to "9" and the character "_". Opening
an existing connection will result in a stream which is an alias to the already
opened stream.

2.3.3 Assigning A Stream To A Nut/TLS stream

Due to the flexibility of Nut/TLS it is necessary to explicitly assign a stream
to operate on to the Nut/TLS stream. This stream may be of any kind, but
must be bidirectional. In most cases this will be a stream obtained from a
socket-TCP connection. The stream to operate on is also called the ”base
stream”.

2.3.4 Handshake

After the base stream is assigned a basic record layer connection is estab-
lished. This connection does neither provide confidentiality nor integrity. To
secure the connection a ”handshake” has to take place. Within this hand-
shake the cryptographic parameters are negotiated and cryptographic keys
are exchanged which will protect following data.

The handshake is normally initiated by the client after establishing the
record connection. To proceed the handshake the make_handshake() func-
tion is called. It just takes a pointer to the Nut/TLS stream as parameter
and returns zero on success.

2.3.5 Send And Receive Data

When the handshake is done data exchange can begin. Exchanging data is
as simple as using fread(), fwrite(), fprintf(). All functions which can
handle streams will also work with Nut/TLS streams.

5

2.3.6 Destruction Of A Nut/TLS stream

The connection is destroyed by calling fclose() with a pointer to the
Nut/TLS stream as parameter.

2.4 Drivers Point-Of-View

2.4.1 Reading Data

When data is requested by the application, the driver first tries to fulfill the
request by using already buffered data. If the drivers buffer does not contain
enough data, a packet is read from the base stream, in-place decrypted and
then chained into the buffer. If the request can still not be fulfilled it reads
the next packet, decrypts it and chains it into the buffer. This is repeated
until the request can be fulfilled or an error occurs. If an error occurs the
data which could be read is returned to the application. The eof-flag and
error indicator are set according to the reason of the error.

2.4.2 Sending Data

If the data to send fits into the write buffer it is simply copied into the write
buffer. If the write buffer is full or the data does not fit into the write buffer
the content of the write buffer is encrypted and send to the base stream.
The remaining data is send in packet with a size which is equal to the size
of the write buffer. If there is a last block, which is smaller than the write
buffer, it is copied into the write buffer.

Encrypting and sending the packet to the base stream is, opposed to
the reading behavior, handled by the lower layer functions. This avoids
additional copying of the data.

2.5 Applications Point-Of-View

Nut/TLS appears as filter to the application. It behaves like a normal
C-style stream (like stdin, stdout and stderr). The stream is bidirec-
tional and binary only, All the tools which are able to operate on this
kind of streams are adequate for use with Nut/TLS streams (like fread(),
fwrite(), fprintf(), . . .).

But before normal operation can take place, it is necessary to prop-
erly start the connection. Therefore a stream has to be assigned to the
Nut/TLS stream and a handshake has to be done. Since Nut/TLS is quite
flexible it is possible to run TLS connections over nearly any other bidi-
rectional stream. So a stream to operate on has to be assigned to the

6

Nut/TLS stream. This is done by int tls_ctl_set_stream(FILE* tls_-

file, FILE* base_stream).

2.6 How The Parts Fit Together

The driver-style implementation allows using TLS connections like normal
streams. But this abstraction covers only the TLS-record-level and the TLS-
alert-protocol. The implementation of handshake itself uses this level of
abstraction and can therefore not be integrated into the driver. Therefore it
is necessary to initiate a handshake manually after opening the connection.
Also renegotiation is not implemented for this and security reasons.

2.7 Implementation content

2.7.1 Header Files

hexdump.h hexdump routines for debugging purposes
sec_memcmp.h secure version of memcmp()
server.key.h declaration of TLS-private-key structures
tls_alert_protocol.h declaration of alert functions
tls_alert_types.h declaration of alert related types and val-

ues
tls_certificate.h declaration of TLS-certificate structures
tls_cipher_suites.h declaration of TLS-cipher-suites related

types and values
tls_crypto.h declaration of cryptographic core func-

tions
tls_driver.h declaration of driver related functions and

types
tls_handshake.h declaration of handshake function
tls_handshake_protocol.h

tls_random.h declaration of PRNG related functions
tls_record_layer.h declaration of record-level TLS functions
tls_resumption.h declaration of functions and types related

to TLS-session-resumption

7

2.7.2 Implementation Files

hexdump.c hexdump routines for debugging
purposes

nuttls_test_system.cert.tls.elf certificate wraped into an elf-
object

sec_memcmp.c secure version of memcmp()
server.key.c structures containing the private

key material
tls_alert_protocol.c alert protocol related functions
tls_cipher_suites.c stuctures and functions related to

TLS-cipher-suites
tls_crypto.c functions handling low level sym-

metric crypto
tls_driver.c driver related functions and

structures
tls_handshake.c functions for the TLS-handshake-

protocol
tls_random.c PRNG wrapper around en-

tropium1

tls_record_layer_common.c functions shared between TLS-
record-layer transmit and receive
functions

tls_record_layer_rx.c functions handling the reception
of TLS-record-layer packets

tls_record_layer_tx.c functions handling the transmis-
sion of TLS-record-layer packets

tls_resumption.c functions for managing the re-
sumtion table

tls_test.c Demo application implementing
a HTTPS server

3 Basic Data-structures

The two most important structures are tls_connection_t and tls_record_-

connection_t. tls_connection_t contains the driver related data, while
tls_record_connection_t contains the TLS related data.

1entropium is part of the ARM-Crypto-Lib

8

3.1 tls connection t� �
1 typedef struct t l s c o n n e c t i o n t t l s c o n n e c t i o n t ;
2
3 struct t l s c o n n e c t i o n t {
4 char ∗name ;
5 t l s c o n n e c t i o n t ∗next ;
6 t l s r e c o r d c o n n e c t i o n t connect ion ;
7 void ∗w r i t e b u f f e r ;
8 s i z e t w r i t e b u f f e r s i z e ;
9 s i z e t w r i t e b u f f e r f i l l ;

10 t l s r e a d b u f f e r b l o c k h e a d e r t ∗ r e a d b u f f e r ;
11 u i n t 8 t w r i t e b u f f e r p r o t o c o l ;
12 u i n t 8 t c l o s i n g ;
13 u i n t 8 t w r i t e l o c k ;
14 } ;� �

3.1.1 name

The name field contains a pointer to a string of characters representing the
name given to the connection during fopen(). The name is actual the part
after the initial "tls:"-prefix of the path.

3.1.2 next

The next pointer points to the next connection in memory, so that all con-
nections form a linked list.

3.1.3 connection

The connection field is a tls_record_connection (not a pointer), holding
the parameters of the TLS connection.

3.1.4 write buffer

The write_buffer pointer points to some memory holding the write buffer.

3.1.5 write buffer size

write_buffer_size is the size of the buffer. The size is considered to be
bytes.

9

3.1.6 write buffer fill

write_buffer_fill is the ammount of actual data in the write buffer. Its
unit is bytes.

3.1.7 read buffer

read_buffer points to the first block header for the read buffer.

3.1.8 write buffer protocol

write_buffer_protocol is the numeric protocol id to use for data trans-
mission.

3.1.9 closing

closing is a flag which indicates if the connection is currently in the process
of closing. If it is closing the field reads one else it reads zero.

3.1.10 write lock

write_lock is a flag indicating if a write is in process. Write requests will
be blocked while this field is non-zero.

3.2 tls record connection t� �
1 typedef struct t l s r e c o r d c o n n e c t i o n t t l s r e c o r d c o n n e c t i o n t ;
2
3 struct t l s r e c o r d c o n n e c t i o n t {
4 FILE∗ base stream ;
5 u i n t 3 2 t s e s s i o n i d ;
6 union a t t r i b u t e ((packed)){
7 struct {
8 u i n t 8 t major ;
9 u i n t 8 t minor ;

10 } names ;
11 u i n t 1 6 t id16 ;
12 } v e r s i on ;
13 u i n t 8 t s e cure ;
14 u i n t 8 t p o s t c l i e n t h e l l o ;
15 t l s r e c o r d s t r u c t u r e p a t t e r n t t x p r e p a t t e r n ;
16 t l s r e c o r d c i p h e r t e x t s t r u c t t r x p r e p a t t e r n ;
17 t l s s e c p a r a m e t e r s t s ec paramete r s ;

10

18 t l s r e c o r d s t a t e s t s e c s t a t e s l o c a l ;
19 t l s r e c o r d s t a t e s t s e c s t a t e s r e m o t e ;
20 t l s r e c o r d p e n d i n g s t a t e t ∗pending ;
21 u i n t 8 t pend ing s ta tus ;
22 t l s e r r o r s t a t e t e r r o r s t a t e ;
23 } ;� �

3.2.1 base stream

base_stream is a pointer to the base stream.

3.2.2 session id

session_id is a 32-bit session id assigned to the connection. It is automat-
ically generated during handshake and can be used for session resumption.

3.2.3 version

The version field is a union holding the TLS protocol version used for com-
munication. It can be used as 16-bit id (id16) or as major (names.major)
and minor (names.minor) part.

3.2.4 secure

The secure flag is used to signalize if a successful handshake has already
took place. It reads zero before the initial handshake and one afterwards.

3.2.5 post clienthello

The post_clienthello flag is used to signalize if checks for packet version
should be relaxed. This is necessary since the initial clienthello may use
a older record layer version for compatibility.

3.2.6 tx pre pattern

The tx_pre_pattern field holds precomputed offset information for sending
packets. These data are computed after the crypto parameters are negoti-
ated.

11

3.2.7 rx pre pattern

The rx_pre_pattern field holds precomputed offset information for receiv-
ing packets. These data are computed after the crypto parameters are ne-
gotiated.

3.2.8 sec parameters

The sec_parameters field holds the negotiated crypto parameters (incl.
master_secret, client_random and server_random.

3.2.9 sec states local

The sec_states_local field holds the contexts for cryptographic algorithms
for the sending side.

3.2.10 sec states remote

The sec_states_remote field holds the contexts for cryptographic algo-
rithms for the receiving side.

3.2.11 pending

pending points to a structure which contains the cryptographic parame-
ters just negotiated but not yet active. The will be used after receiving a
change_cipher_spec message.

3.2.12 pending status

pending_status signalizes for which direction there are currently pending
states.

3.2.13 error state

error_state contains information about the last error which occurred.

4 Buffering

There are two buffers per connection, one for the receiving side and one for
the transmitting side.

12

4.1 Write Buffer

The write buffer implementation is quite simple. The buffer consists of a
memory area allocated by create_new_connection() (in tls_driver.h).
All data which should be send out normally are just copied into the buffer
and the whole buffer is transmitted (by tls_connection_send_buffer (in
tls_driver.h)) when it is full. An exception are messages which are to
large for the buffer. In this case the buffer is send on the wire and then
blocks of the message which all have the size of the buffer. If data remains
(which will not fill a whole buffer) it is copied into the buffer.

4.1.1 Allocation

The whole allocation of the buffer happens in create_new_connection()

(in tls_driver.h). The two macros INITIAL_WRITE_BUFFER_SIZE and
MIN_WRITE_BUFFER_SIZE are used to configure the allocation process. The
function first tries to allocate INITIAL_WRITE_BUFFER_SIZE bytes of mem-
ory, if that fails it successively reduces the memory request to the half of
the previous request and tries again, until the requested is fulfilled or the re-
quested size is below MIN_WRITE_BUFFER_SIZE. If the requested size is lower
than MIN_WRITE_BUFFER_SIZE an error is returned.

4.2 Read Buffer

Since TLS is a packet based protocol, always whole packets are received
and buffered as such. The buffered packets are managed by a linked list of
header blocks which contain the management information for those packets.� �

1 struct t l s r e a d b u f f e r b l o c k h e a d e r s t {
2 u i n t 8 t ∗head ;
3 u i n t 8 t ∗ b u f f e r ;
4 t l s r e a d b u f f e r b l o c k h e a d e r t ∗next ;
5 s i z e t remain ing bytes ;
6 u i n t 8 t p ro to co l ;
7 } ;� �

5 Packet Reception

The process of packet reception starts in read_packet_to_buffer() (in
tls_driver.h) which is called if the read buffer could not fulfill a read
request (see 4.1.1).

13

First it allocates three buffers:

• buffer for holding the packet content

• packet_info for holding information generated by packet decryption

• header for holding information about the memory block (for inclusion
in the buffers linked list)

Then it reads the 5 byte packet header from the base stream into the
just allocated buffer buffer.

offset size meaning

0 (byte) 1 (byte) sub-protocol
1 (byte) 2 (byte) protocol version
3 (byte) 2 (byte) remaining data bytes in packet

The standard limits the maximum amount of remaining bytes to 214 +
2048 (rfc5246 page 21). This limit is checked, then optionally a compile time
specified limit (the macro MAX_RX_PACKET_LENGTH). If the length checks are
passed the size of the header buffer is expanded so it can hold the whole
packet.

Then it reads the remaining part of the packet from the base stream into
buffer.

Now the decryption routine tls_record_decode() gets called which de-
crypts the packet in place and returns data in an information structure
(tls_record_packet_info_t).

Here the packet version is checked (for all packets except an initial
client_hello) and the length is checked again and decryption is delegated
to tls_crypto_decipher_packet()

In tls_crypto_decipher_packet() the decryption work is delegated to
the CBC or stream functions of the ARM-Crypto-LIb.

Back in tls_record_decode() the next thing is trying to compute the
structure of the packet. this computation is accelerated by precomputed
tables based on the negotiated parameters (compute_pattern()). After the
structure is computed the Message Authentification Code (MAC) is checked
(check_mac()) and then the message padding (check_padding()).

If any check goes wrong a proper alert message is generated and send to
the base stream.

The driver, after tls_record_decode() returns, copies necessary infor-
mation from packet_info into header and frees packet_info. The next
step s checking the protocol if it is set to alert_proto (21) and takes action
depending on what kind of alert message was received (see 8 on page 16).

14

If the message is no fatal alert message or a close_notify it is chained
into the linked list forming the read buffer.

6 Packet Transmission

The process of packet transmission starts in tls_connection_send_buffer()

(in driver.h) which is called when the write buffer is flushed (which occurs
if the write buffer is full or an external flush is issued also see 4.1 on page 13

tls_connection_send_buffer() itself first checks the validity of the
given protocol number (it mus be be 20, 21, 22 or 23). After this basic check
memory is allocateted for the pinfo structure of type tls record packet info t.
This structure is filled with the available data.

If the packet needs padding a valid padding length is randomly selected
by random_pad_length().

Then a buffer for the packet s allocated. All further processing of the
packet takes place in this buffer.

After the address of the buffer is fix, the structure of the packet is com-
puted with absolute values by compute_pattern().

Now the buffer is filled with copied data and a header is prepended.

7 The Handshake Process

The handshake initializes the cryptographic parameters of a TLS connec-
tion. It is run at the beginning of a session and is initiated by the client.
Multiple messages are exchanged of which some are optional. A normal
handshake (as shown by figure 1 on the next page) involves asymmetric
cryptogrphic computations and so is very computing intense. the standard
allows re-handshaking, which means doing a handshake via an already ini-
tialized session. This is not supported since it might be a security problem2.
An alternative to do a ”normal” full handshake is to do an abbreviated
handshake to resume a session using common secrets that already have been
computed between the two parties. This abbreviated handshake is shown in
figure ?? on page ??. It is very fast since only symmetric primitives are used
to compute the new keys (derived from the common secret and the random
values exchanged with the hello messages).

The handshake implementation (tls_handshake.c)) works on top of the
record layer. It is currently restricted to RSA cipher suites but can easily

2See RFC 5746 for a description of the attack

15

here

Client Server
ClientHello −→

←− ServerHello
←− Certificate
←− ServerHelloDone

ClientKeyExchange −→
[ChangeCipherSpec] −→
Finished −→

←− [ChangeCipherSpec]
←− Finised

ApplicationData ←→ ApplicationData

Figure 1: TLS handshake as done by Nut/TLS

be replaced. The handshake handling routine (make_handshake()) is called
directly by the application after opening the Nut/TLS stream file. make_-

handshake() waits for an incoming client_hello message and then starts
the negotiation. It returns zero on success and non-zero if an error occurred.

Since all handshake messages start with a three byte length field, a
generic function is used to read handshake messages and allocate memory
for them (read_handshake_packet).

The certificate message send to the client is stored completely (with
handshake header) in FLASH. It is created by specific tools (cert-merge)
before compilation and is linked in during the linking stage. Since usage of
the data positioned by the linker requires knowledge of the symbols referring
to the binary blob, those are defined as macros (CERT_BLOB_START, CERT_-
BLOB_END and CERT_BLOB_SIZE).

The private RSA key is stored in server.key.c which defines multiple
biginteger objects needed to do the RSA computations.

Users should replace the certificate and the key by self created ones
where the key should be kept strictly secret.

8 Alert Handling

Alert handling is directly done by the driver and the record layer. The
main purpose of the alert protocol is to signal warnings, errors and regular
termination of the communication. The last is especially important since
abnormal termination by a fatal error causes the session to be not resume-
able. Handling of incomming alert messages is done directly after the packet

16

is decrypted and before it would be stored in the read buffer. Every alert
is send to the tls_alert_receive() function (in alert_protocol.c) and
further checked and processed. This would be the place to handle specific
errors if the application needs such handling. The return value of tls_-

alert_receive() signal if the connection should be terminated or if it can
further operate. If a fatal error or a close notify occurs the connection will
be terminated, which is handled by the function in the driver.

Sending alert messages (due to problems) happens by a call to tls_-

alert_send(). This function can also handle an additional comment which
will also be logged (if logging is enabled).

17

References

18

	1 About
	2 Overview
	2.1 Features
	2.2 A few words about TLS
	2.3 Basic operation of Nut/TLS
	2.3.1 Driver Initialization
	2.3.2 Opening A Nut/TLS stream
	2.3.3 Assigning A Stream To A Nut/TLS stream
	2.3.4 Handshake
	2.3.5 Send And Receive Data
	2.3.6 Destruction Of A Nut/TLS stream

	2.4 Drivers Point-Of-View
	2.4.1 Reading Data
	2.4.2 Sending Data

	2.5 Applications Point-Of-View
	2.6 How The Parts Fit Together
	2.7 Implementation content
	2.7.1 Header Files
	2.7.2 Implementation Files

	3 Basic Data-structures
	3.1 tls_connection_t
	3.1.1 name
	3.1.2 next
	3.1.3 connection
	3.1.4 write_buffer
	3.1.5 write_buffer_size
	3.1.6 write_buffer_fill
	3.1.7 read_buffer
	3.1.8 write_buffer_protocol
	3.1.9 closing
	3.1.10 write_lock

	3.2 tls_record_connection_t
	3.2.1 base_stream
	3.2.2 session_id
	3.2.3 version
	3.2.4 secure
	3.2.5 post_clienthello
	3.2.6 tx_pre_pattern
	3.2.7 rx_pre_pattern
	3.2.8 sec_parameters
	3.2.9 sec_states_local
	3.2.10 sec_states_remote
	3.2.11 pending
	3.2.12 pending_status
	3.2.13 error_state

	4 Buffering
	4.1 Write Buffer
	4.1.1 Allocation

	4.2 Read Buffer

	5 Packet Reception
	6 Packet Transmission
	7 The Handshake Process
	8 Alert Handling

